This article sets forth guidelines for in silico (simulation-based) proof-of-concept testing of artificial pancreas control algorithms. The goal was to design a test procedure that can facilitate regulatory approval [e.g., Food and Drug Administration Investigational Device Exemption] for General Clinical Research Center experiments without preliminary testing on animals. The methodology is designed around a software package, based on a recent meal simulation model of the glucose-insulin system. Putting a premium on generality, this document starts by specifying a generic, rather abstract, meta-algorithm for control. The meta-algorithm has two main components: (1) patient assessment and tuning of control parameters, i.e., algorithmic processes for collection and processing patient data prior to closed-loop operation, and (2) controller warm-up and run-time operation, i.e., algorithmic processes for initializing controller states and managing blood glucose. The simulation-based testing methodology is designed to reveal the conceptual/mathematical operation of both main components, as applied to a large population of in silico patients with type 1 diabetes mellitus. © Diabetes Technology Society.
CITATION STYLE
Patek, S. D., Bequette, B. W., Breton, M., Buckingham, B. A., Dassau, E., Doyle, F. J., … Zisser, H. (2009). In silico preclinical trials: Methodology and engineering guide to closed-loop control in type 1 diabetes mellitus. Journal of Diabetes Science and Technology, 3(2), 269–282. https://doi.org/10.1177/193229680900300207
Mendeley helps you to discover research relevant for your work.