Use of topographic models for mapping soil properties and processes

17Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

Abstract

Landscape topography is an important driver of landscape distributions of soil properties and processes due to its impacts on gravity-driven overland and intrasoil lateral transport of water and nutrients. Rapid advancements in aerial, space, and geographic technologies have led to large scale availability of digital elevation models (DEMs), which have proven beneficial in a wide range of applications by providing detailed topographic information. In this report, we presented a summary of recent topography-based soil studies and reviewed five main groups of topographic models in geospatial analyses widely used for soil sciences. We then compared performances of two types of topography-based models—topographic principal component regression (TPCR) and TPCR-kriging (TPCR-Kr)—to ordinary kriging (OKr) models in mapping spatial patterns of soil organic carbon (SOC) density and redistribution (SR) rate. The TPCR and OKr models were calibrated at an agricultural field site that has been intensively sampled, and the TPCR and TPCR-Kr models were evaluated at another field of interest with two sampling transects. High-resolution topographic variables generated from light detection and ranging (LiDAR)-derived DEMs were used as inputs for the TPCR model building. Both TPCR and OKr models provided satisfactory results on SOC density and SR rate estimations during model calibration. The TPCR models successfully extrapolated soil parameters outside of the area in which the model was developed but tended to underestimate the range of observations. The TPCR-Kr models increased the accuracies of estimations due to the inclusion of residual kriging calculated from observations of transects for local correction. The results suggest that even with low sample intensives, the TPCR-Kr models can reduce estimation variances and provide higher accuracy than the TPCR models. The case study demonstrated the feasibility of using a combination of linear regression and spatial correlation analysis to localize a topographic model and to improve the accuracy of soil property predictions in different regions.

Cite

CITATION STYLE

APA

Li, X., McCarty, G. W., Du, L., & Lee, S. (2020, June 1). Use of topographic models for mapping soil properties and processes. Soil Systems. MDPI AG. https://doi.org/10.3390/soilsystems4020032

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free