Background: Using in vivo mouse models, the mechanisms of CD4 + T cell help have been intensively investigated. However, a mechanistic analysis of human CD4 + T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4 + T cell help of CD8 + T cell proliferation using a novel in vitro model. Methods/Principal Findings: We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3 + regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-ã and IL-2. In this aAPC-based system, the presence of autologous CD4 + T cells was associated with significantly improved CD8 + T cell expansion in vitro. The CD4 + T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4 + T cell help of CD8 + T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8 + T cells. Conclusions: We have developed an in vitro model that advances our understanding of the immunobiology of human CD4 + T cell help of CD8 + T cells. Our data suggests that human CD4 + T cell help can be leveraged to expand CD8 + T cells in vitro. © 2012 Butler et al.
CITATION STYLE
Butler, M. O., Imataki, O., Yamashita, Y., Tanaka, M., Ansén, S., Berezovskaya, A., … Hirano, N. (2012). Ex vivo expansion of human CD8 + T cells using autologous CD4 + T cell help. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0030229
Mendeley helps you to discover research relevant for your work.