Carbon storage and economic efficiency of fruit-based systems in semi-arid region: a symbiotic approach for sustainable agriculture and climate resilience

4Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

Enhancing our understanding of carbon (C) stock in diverse horticulture and fruit-based agroforestry systems has potential to provide farmers with supplementary advantages in terms of poverty alleviation and livelihood development which can significantly benefit C market initiatives like UN-REDD (reducing emissions from deforestation and forest degradation). Therefore, the current study aimed to assess the biomass accumulation, C storage and economic efficacy of seven agro-ecosystems, namely guava-based agri-horticulture system (AHS), mango-AHS, guava- pure orchard (PO), mango-PO, Indian gooseberry -PO, teak boundary plantation (TBP) and annual cropping system (ACS) under two different landscape positions viz., upland and lowland in the semi-arid region of Vindhyan ranges. The result indicated that mango-AHS accumulated significantly (p < 0.05) higher biomass (26.01 t ha−1) and vegetation C density (13.01 t C ha−1) whereas, soil (35.23 t C ha−1), litter (0.64 t C ha−1), and total C density (46.63 t C ha−1) was maximum under mango-PO closely followed by mango-AHS. The guava-PO system exhibited significantly (p < 0.05) higher C sequestration (2.11 t C ha−1 yr−1), and CO2 abatement (7.76 t CO2 ha−1 yr−1) rate compared to other systems with C credit generation of 129.76 US$ ha−1 year−1. However, mango-AHS was the most lucrative system providing net returns of 4835.48 US$ ha−1 yr−1 and 5.87 benefit–cost ratio. The C credits help in getting farmers an additional income; however, the economic impact of C credit was low (1.16–6.80%) when weighed against the overall economic efficacy of the different systems. Overall, the study concluded that farmers in the region should adopt fruit-based systems, especially agroforestry systems to establish mutually beneficial relationships between mitigation of climate change and livelihood stability. Graphical Abstract: (Figure presented.).

Cite

CITATION STYLE

APA

Singh, M. K., Yadav, S. K., Rajput, B. S., & Sharma, P. (2024). Carbon storage and economic efficiency of fruit-based systems in semi-arid region: a symbiotic approach for sustainable agriculture and climate resilience. Carbon Research, 3(1). https://doi.org/10.1007/s44246-024-00114-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free