Alumina supported cobalt catalysts were prepared, characterized and applied in ethanol steam reforming for hydrogen production. The support and the supported catalysts were prepared, respectively, by the solvothermal and precipitation, impregnation and deposition-precipitation methods. The cobalt was added by impregnation and deposition-precipitation in the Al2O3 supports using a Co(NO3)2·6H2O solution. The solids were characterized, Temperature-Programmed Re-duction with H2 (RTP-H2), X-Ray Diffraction (DRX), BET Nitrogen Adsorption and Temperature Programmed Oxida-tion (TPO). The results indicated that the preparation method and the treatment conditions of samples were appropriate for obtaining the wanted compounds. Co3O4 phase was verified for all catalysts through analyses of DRX and RTP-H2 results. Catalytic tests were performed by varying the temperature from 450?C to 600?C, with water: ethanol molar ratio of 3:1. The ethanol conversion was superior of 99%, with greater hydrogen yield at 600℃. The lower carbon deposition was observed in catalysts prepared with solvothermal/deposition-precipitation methods at 450℃.
CITATION STYLE
Garcia, S. R., & Assaf, J. M. (2012). Effect of the Preparation Method on Co/Al 2 O 3 Catalyst Applied to Ethanol Steam Reforming Reaction Production of Hydrogen. Modern Research in Catalysis, 01(03), 52–57. https://doi.org/10.4236/mrc.2012.13007
Mendeley helps you to discover research relevant for your work.