Motor Sequence Learning Deficits in Idiopathic Parkinson’s Disease Are Associated With Increased Substantia Nigra Activity

4Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Previous studies have shown that persons with Parkinson’s disease (pwPD) share specific deficits in learning new sequential movements, but the neural substrates of this impairment remain unclear. In addition, the degree to which striatal dopaminergic denervation in PD affects the cortico-striato-thalamo-cerebellar motor learning network remains unknown. We aimed to answer these questions using fMRI in 16 pwPD and 16 healthy age-matched control subjects while they performed an implicit motor sequence learning task. While learning was absent in both pwPD and controls assessed with reaction time differences between sequential and random trials, larger error-rates during the latter suggest that at least some of the complex sequence was encoded. Moreover, we found that while healthy controls could improve general task performance indexed by decreased reaction times across both sequence and random blocks, pwPD could not, suggesting disease-specific deficits in learning of stimulus-response associations. Using fMRI, we found that this effect in pwPD was correlated with decreased activity in the hippocampus over time. Importantly, activity in the substantia nigra (SN) and adjacent bilateral midbrain was specifically increased during sequence learning in pwPD compared to healthy controls, and significantly correlated with sequence-specific learning deficits. As increased SN activity was also associated (on trend) with higher doses of dopaminergic medication as well as disease duration, the results suggest that learning deficits in PD are associated with disease progression, indexing an increased drive to recruit dopaminergic neurons in the SN, however, unsuccessfully. Finally, there were no differences between pwPD and controls in task modulation of the cortico-striato-thalamo-cerebellar network. However, a restricted nigral-striatal model showed that negative modulation of SN to putamen connection was larger in pwPD compared to controls during random trials, while no differences between the groups were found during sequence learning. We speculate that learning-specific SN recruitment leads to a relative increase in SN- > putamen connectivity, which returns to a pathological reduced state when no learning takes place.

Cite

CITATION STYLE

APA

Tzvi, E., Bey, R., Nitschke, M., Brüggemann, N., Classen, J., Münte, T. F., … Rumpf, J. J. (2021). Motor Sequence Learning Deficits in Idiopathic Parkinson’s Disease Are Associated With Increased Substantia Nigra Activity. Frontiers in Aging Neuroscience, 13. https://doi.org/10.3389/fnagi.2021.685168

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free