Safe water is fundamental to life and sustainable development. Despite modern civilization pacing into the 21st century, global access to safe water is disparate and inadequate particularly in south Asia and Africa. The need of the hour is to promote appropriate technologies, such as desalination, which are economically viable and environmentally conducive. With increasing stress on renewable energy use, technologies based on effectively harnessing solar energy would prove sustainable. Solar-still is a desalination technology that effectively harnesses solar energy. Solar-stills generate safe water from either contaminated and/or brackish water. They are an enabling domestic technology that can suit decentralized operation and maintenance. Their fundamental dependence on solar energy and relatively low yield has thus far impeded wide-spread adoption. The current article discusses the prospects of solar-stills as a safe-water technology. Subsequently, an innovative low internal-volume stepped solar-still has been commissioned and tested for its productivity under sealed and unsealed conditions. The results of the experimental investigation have been discussed in this article. The salient contribution in this article pertains to the performance of a stepped solar-still under sealed and unsealed conditions. Such an investigation has been found to be crucial, but hitherto unattended to.
CITATION STYLE
Pillai, R., Libin, A. T., & Mani, M. (2015). Study into solar-still performance under sealed and unsealed conditions. International Journal of Low-Carbon Technologies, 10(4), 354–364. https://doi.org/10.1093/ijlct/ctt045
Mendeley helps you to discover research relevant for your work.