Satellite altimetry reveals substantial decadal variability in sea level ζ across the tropical Pacific during 1993–2015. An ocean state estimate that faithfully reproduces the observations is used to elucidate the origin of these low-frequency tropical Pacific ζ variations. Analysis of the hydrostatic equation reveals that recent decadal ζ changes in the tropical Pacific are mainly thermosteric in nature, related to changes in upper-ocean heat content. A forcing experiment performed with the numerical model suggests that anomalous wind stress was an important driver of the relevant heat storage and thermosteric variation. Closed budget diagnostics further clarify that the wind-stress-related thermosteric ζ variation resulted from the joint actions of large-scale ocean advection and local surface heat flux, such that advection controlled the budget over shorter, intraseasonal to interannual time scales, and local surface heat flux became increasingly influential at longer decadal periods. In particular, local surface heat flux was important in contributing to a recent reversal of decadal ζ trends in the tropical Pacific. Contributions from local surface heat flux partly reflect damping latent heat flux tied to wind-stress-driven sea-surface-temperature variations.
CITATION STYLE
Piecuch, C. G., Thompson, P. R., Ponte, R. M., Merrifield, M. A., & Hamlington, B. D. (2019). What Caused Recent Shifts in Tropical Pacific Decadal Sea-Level Trends? Journal of Geophysical Research: Oceans, 124(11), 7575–7590. https://doi.org/10.1029/2019JC015339
Mendeley helps you to discover research relevant for your work.