Pharmacological Modulation of the MIP-1 Family and Their Receptors Reduces Neuropathic Pain Symptoms and Influences Morphine Analgesia: Evidence from a Mouse Model

5Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Neuropathic pain pathophysiology is not fully understood, but it was recently shown that MIP-1 family members (CCL3, CCL4, and CCL9) have strong pronociceptive properties. Our goal was to examine how pharmacological modulation of these chemokines and their receptors (CCR1 and CCR5) influence hypersensitivity after nerve injury in Albino Swiss male mice. The spinal changes in the mRNA/protein levels of the abovementioned chemokines and their receptors were measured using RT-qPCR and ELISA/Western blot techniques in a mouse model of chronic constriction injury of the sciatic nerve. Behavioral studies were performed using the von Frey and cold plate tests after pharmacological treatment with neutralizing antibodies (nAbs) against chemokines or antagonists (CCR1-J113863, CCR5-TAK-220/AZD-5672) alone and in coadministration with morphine on Day 7, when the hypersensitivity was fully developed. Our results showed enhanced protein levels of CCL3 and CCL9 1 and 7 days after nerve injury. The single intrathecal administration of CCL3 or CCL9 nAb, J113863, TAK-220, or AZD-5672 diminished neuropathic pain symptoms and enhanced morphine analgesia. These findings highlight the important roles of CCL3 and CCL9 in neuropathic pain and additionally indicate that these chemokines play essential roles in opioid analgesia. The obtained results suggest CCR1 and CCR5 as new, interesting targets in neuropathy treatment.

Cite

CITATION STYLE

APA

Ciechanowska, A., Pawlik, K., Ciapała, K., & Mika, J. (2023). Pharmacological Modulation of the MIP-1 Family and Their Receptors Reduces Neuropathic Pain Symptoms and Influences Morphine Analgesia: Evidence from a Mouse Model. Brain Sciences, 13(4). https://doi.org/10.3390/brainsci13040579

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free