Indoleamine 2,3-dioxygenase (IDO) catalyzes the initial, rate-limiting step of tryptophan (Trp) catabolism along the kynurenine (KYN) pathway, and its induction in cells of the immune system in response to cytokines has been implicated in the regulation of antigen presentation and responses to cell-mediated immune attack. Microarray and quantitative PCR analyses of isolated human islets incubated with interferon (IFN)-γ for 24 h revealed increased expression of IDO mRNA (>139-fold) and Trp-tRNA synthase (WARS) (>17-fold) along with 975 other transcripts more than threefold, notably the downstream effectors janus kinase (JAK)2, signal transducer and activator of transcription (STAT)1, IFN-γ regulatory factor-1, and several chemokines (CXCL9/MIG, CXCL10/IP10, CXCL11/1-TAC, CCL2, and CCL5/RANTES) and their receptors. IDO protein expression was upregulated in IFN-γ-treated islets and accompanied by increased intracellular IDO enzyme activity and the release of KYN into the media. The response to IFN-γ was countered by interleukin-4 and 1α-methyl Trp. Immunohistochemical localization showed IDO to be induced in cells of both endocrine, including pancreatic duodenal homeobox 1-positive β-cells, and nonendocrine origin. We postulate that in the short term, IDO activation may protect islets from cytotoxic damage, although chronic exposure to various Trp metabolites could equally lead to β-cell attrition. © 2007 by the American Diabetes Association.
CITATION STYLE
Sarkar, S. A., Wong, R., Hackl, S. I., Moua, O., Gill, R. G., Wiseman, A., … Hutton, J. C. (2007). Induction of indoleamine 2,3-dioxygenase by interferon-γ in human islets. Diabetes, 56(1), 72–79. https://doi.org/10.2337/db06-0617
Mendeley helps you to discover research relevant for your work.