MicroRNAs (miRNAs) play an important regulatory role in breast tumorigenesis. Previously, we found that let-7 miRNAs were downregulated significantly in formalin-fixed paraffin-embedded (FFPE) breast cancer tissues. In this study, we further found that endogenous levels of let-7b and let-7i miRNAs are inversely correlated with levels of estrogen receptor (ER)-a36, a new variant of ER-α66, in the FFPE tissue set. Bioinformatic analysis suggested that ER-α36 may be another target of let-7 miRNAs. To test this hypothesis, cotransfection of let-7 mimics or inhibitors together with full-length or a fragment of ER-α36 3′UTR luciferase construct was performed, and we found that let-7b and let-7i mimics suppressed the activity of reporter gene significantly, which was enhanced remarkably by let-7b and let-7i inhibitors. Both mRNA and protein expression of ER-α36 were inhibited by let-7 mimics and enhanced by let-7 inhibitors. Furthermore, ER-α36 mediated nongenomic MAPK and Akt pathways were weakened by let-7b and let-7i mimics in triple negative breast cancer cell line MDA-MB-231. The reverse correlation between let-7 miRNAs and ER-α36 also exists in Tamoxifen (Tam)-resistant MCF7 cell line. Transfection of let-7 mimics to Tam-resistant MCF7 cells downregulated ER-α36 expression and enhanced the sensitivity of MCF7 cells to Tam in estrogen-free medium, which could be restored by overexpression of ER-α36 constructs without 3′UTR. Our results suggested a novel regulatory mechanism of let-7 miRNAs on ER-α36 mediated nongenomic estrogen signal pathways and Tam resistance. © 2011 The Feinstein Institute for Medical Research.
CITATION STYLE
Zhao, Y., Deng, C., Lu, W., Xiao, J., Ma, D., Guo, M., … Xiao, G. G. (2011). Let-7 microRNAs induce tamoxifen sensitivity by downregulation of estrogen receptor α signaling in breast cancer. Molecular Medicine, 17(11), 1233–1241. https://doi.org/10.2119/molmed.2010.00225
Mendeley helps you to discover research relevant for your work.