Recently, quantifying the level of the synchrony in non-identical networks has got considerable attention. In the first part of this paper, a new synchronization index for non-identical networks is proposed. Non-identical networks can be categorized into two main types. The first group consists of similar oscillators with miss-match in their parameters, and the second group is organized from completely different oscillators. The synchronizability of the second group of the non-identical networks is more challenging since the amplitude and frequencies of the different oscillators may not be matched. Thus, one way to investigate the limitation of the synchronizability of these networks is to explore the parameter space of their amplitude and frequency. In the second part of this research, the amplitude and frequency of each individual system of the non-identical network are considered as varying parameters and the effect of these parameters on the synchronizability of the network is measured with the propsed index. The results are compared with the conventional indexes, such as the root-mean-square error and phase synchrony with the help of Hilbert transform. The outcomes show that the new proposed synchronization index not only is simple and accurate, but also fast with short computational time. It is not affected by amplitude, phase, or polarity. It can detect the similarity in the uctuations which is a sign of synchrony in the non-identical networks.
CITATION STYLE
Panahi, S., & Jafari, S. (2021). New synchronization index of non-identical networks. Discrete and Continuous Dynamical Systems - Series S, 14(4), 1359–1373. https://doi.org/10.3934/DCDSS.2020371
Mendeley helps you to discover research relevant for your work.