Lattice-based signature schemes following the Goldreich-Goldwasser-Halevi (GGH) design have the unusual property that each signature leaks information on the signer's secret key, but this does not necessarily imply that such schemes are insecure. At Eurocrypt '03, Szydlo proposed a potential attack by showing that the leakage reduces the key-recovery problem to that of distinguishing integral quadratic forms. He proposed a heuristic method to solve the latter problem, but it was unclear whether his method could attack real-life parameters of GGH and NTRUSign. Here, we propose an alternative method to attack signature schemes à la GGH by studying the following learning problem: given many random points uniformly distributed over an unknown n-dimensional parallelepiped, recover the parallelepiped or an approximation thereof. We transform this problem into a multivariate optimization problem that can provably be solved by a gradient descent. Our approach is very effective in practice: we present the first successful key-recovery experiments on NTRUSign-251 without perturbation, as proposed in half of the parameter choices in NTRU standards under consideration by IEEE P1363.1. Experimentally, 400 signatures are sufficient to recover the NTRUSign-251 secret key, thanks to symmetries in NTRU lattices. We are also able to recover the secret key in the signature analogue of all the GGH encryption challenges. © 2008 International Association for Cryptologic Research.
CITATION STYLE
Nguyen, P. Q., & Regev, O. (2009). Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Journal of Cryptology, 22(2), 139–160. https://doi.org/10.1007/s00145-008-9031-0
Mendeley helps you to discover research relevant for your work.