The industrial preparation of pasteurized soft boiled eggs requires meticulous planning of the thermal process. Requirements on keeping the yolk liquid and on extinction of potential salmonella allow little leeway in the creation of this process. The variation of the eggs' properties adds to the complexity. Thermal simulation of heat transfer within an egg is needed to get correlation data between transient temperature distribution and the egg's dimensional and material properties. A fast simulator of conductive transient heat transfer with a fixed grid of cells is developed for this purpose. The motivation for achieving the highest simulation speed was the potential integration of a simulation tool for simulation based predictions into an embedded control system. The simulated volume is a cylinder. The simulated object (the egg) is defined within the cylinder. Simulation results are analysed and used in the creation of the thermal process which results in certified pasteurized soft boiled eggs. The presented approach to the design of transient simulation can be used for applications ranging beyond the transient thermal simulation of foods. It can be adapted for any transient simulation where the local temporal intensity of changes depends on gradients and the properties of the matter.
CITATION STYLE
Jenko, M. (2015). Numerical cooking for pasteurized soft boiled eggs. Strojniski Vestnik/Journal of Mechanical Engineering, 61(5), 319–329. https://doi.org/10.5545/sv-jme.2014.2187
Mendeley helps you to discover research relevant for your work.