Complex shape and texture representations are known to be constructed from V1 along the ventral visual pathway through areas V2 and V4, but the underlying mechanism remains elusive. Recent study suggests that, for processing of textures, a collection of higher-order image statistics computed by combining V1-like filter responses serves as possible representations of textures both in V2 and V4. Here, to gain a clue for how these image statistics are processed in the extrastriate visual areas, we compared neuronal responses to textures in V2 and V4 of macaque monkeys. For individual neurons, we adaptively explored their preferred textures from among thousands of naturalistic textures and fitted the obtained responses using a combination of V1-like filter responses and higher-order statistics. We found that, while the selectivity for image statistics was largely comparable between V2 and V4, V4 showed slightly stronger sensitivity to the higher-order statistics than V2. Consistent with that finding, V4 responses were reduced to a greater extent than V2 responses when the monkeys were shown spectrally matched noise images that lacked higher-order statistics. We therefore suggest that there is a gradual development in representation of higher-order features along the ventral visual hierarchy.
CITATION STYLE
Okazawa, G., Tajima, S., & Komatsu, H. (2017). Gradual Development of Visual Texture-Selective Properties between Macaque Areas V2 and V4. Cerebral Cortex, 27(10), 4867–4880. https://doi.org/10.1093/cercor/bhw282
Mendeley helps you to discover research relevant for your work.