Roles for ClpXP in regulating the circadian clock in Synechococcus elongatus

23Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

In cyanobacteria, the KaiABC posttranslational oscillator drives circadian rhythms of gene expression and controls the timing of cell division. The Kai-based oscillator can be reconstituted in vitro, demonstrating that the clock can run without protein synthesis and degradation; however, protein degradation is known to be important for clock function in vivo. Here, we report that strains deficient in the ClpXP1P2 protease have, in addition to known long-period circadian rhythms, an exaggerated ability to synchronize with the external environment (reduced “jetlag”) compared with WT strains. Deletion of the ClpX chaperone, but not the protease subunits ClpP1 or ClpP2, results in cell division defects in a manner that is dependent on the expression of a dusk-peaking factor. We propose that chaperone activities of ClpX are required to coordinate clock control of cell division whereas the protease activities of the ClpXP1P2 complex are required to maintain appropriate periodicity of the clock and its synchronization with the external environment.

Cite

CITATION STYLE

APA

Cohen, S. E., McKnight, B. M., & Golden, S. S. (2018). Roles for ClpXP in regulating the circadian clock in Synechococcus elongatus. Proceedings of the National Academy of Sciences of the United States of America, 115(33), E7805–E7813. https://doi.org/10.1073/pnas.1800828115

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free