Current treatments for deep tissue burns are limited, and most serve only to enhance hydration or prevent bacterial growth. This leaves burn healing dependent on slow natural processes to debride the wound and reestablish the epidermal and dermal layers of the skin. Infections are well known to destabilize this process through a variety of mechanisms, most notably through increased inflammation and the resulting oxidative stress. In this study, we show that ARAG (an antioxidant-rich antimicrobial gel) can suppress the growth of multiple bacteria commonly found to infect burns (Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, and Staphylococcus aureus). This inhibition is comparable to that conferred by silver ion release from burn dressings such as Mepilex-Ag. We further show, using a porcine model for deep partial-thickness burns, that ARAG allows for enhanced wound healing over Mepilex-Ag, the current standard of care. Histological findings indicate this is likely due to increased wound debridement and dampening of late inflammatory processes, leading to more balanced physiologic healing. Taken together, these findings show promise for ARAG as a superior alternative to the current standard of care.
CITATION STYLE
Cartwright, B. M., Fox, S. J., Underdown, M. J., Clark, W. A., & Molnar, J. A. (2023). ARAG, an Antioxidant-Rich Gel, Shows Superiority to Mepilex Ag in the Treatment of Deep Partial Thickness Burns without Sacrificing Antimicrobial Efficiency. Antioxidants, 12(6). https://doi.org/10.3390/antiox12061176
Mendeley helps you to discover research relevant for your work.