Context. A good constraint of when the growth of dust grains from sub-micrometer to millimeter sizes occurs, is crucial for planet formation models. This provides the first step towards the production of pebbles and planetesimals in protoplanetary disks. Currently, it is well established that Class II objects have large dust grains. However, it is not clear when in the star formation process this grain growth occurs. Aims. We use multi-wavelength millimeter observations of a Class I protostar to obtain the spectral index of the observed flux densities αmm of the unresolved disk and the surrounding envelope. Our goal is to compare our observational results with visibility modeling at both, 1.3 and 2.7mm simultaneously. Methods. We present data from NOEMA at 2.7mm and SMA at 1.3mm of the Class I protostar, Per-emb-50. We model the dust emission with a variety of parametric and radiative-transfer models to deduce the grain size from the observed emission spectral index. Results. We find a spectral index in the envelope of Per-emb-50 of αenv = 3.3 ± 0.3, similar to the typical ISM values. The radiativetransfer modeling of the source confirms this value of αenv with the presence of dust with a amax ≤ 100 μm. Additionally, we explore the backwarming effect, where we find that the envelope structure affects the millimeter emission of the disk. Conclusions. Our results reveal grains with a maximum size no larger than 100 μm in the inner envelope of the Class I protostar Per-emb-50, providing an interesting case to test the universality of millimeter grain growth expected in these sources.
CITATION STYLE
Agurto-Gangas, C., Pineda, J. E., Szucs, L., Testi, L., Tazzari, M., Miotello, A., … Bourke, T. L. (2019). Revealing the dust grain size in the inner envelope of the Class i protostar Per-emb-50. Astronomy and Astrophysics, 623. https://doi.org/10.1051/0004-6361/201833666
Mendeley helps you to discover research relevant for your work.