Manipulation of aqueous droplets in microchannels has great significance in various emerging applications such as biological and chemical assays. Magnetic-field based droplet manipulation that offers unique advantages is consequently gaining attention. However, the physics of magnetic field-driven cross-stream migration and the coalescence of aqueous droplets with an aqueous stream are not well understood. Here, we unravel the mechanism of cross-stream migration and the coalescence of aqueous droplets flowing in an oil based ferrofluid with a coflowing aqueous stream in the presence of a magnetic field. Our study reveals that the migration phenomenon is governed by the advection (τa) and magnetophoretic (τm) time scales. Experimental data show that the dimensionless equilibrium cross-stream migration distance δ* and the length Lδ∗ required to attain equilibrium cross-stream migration depend on the Strouhal number, St = (τa/τm), as δ* = 1.1 St0.33 and Lδ*=5.3 St-0.50, respectively. We find that the droplet-stream coalescence phenomenon is underpinned by the ratio of the sum of magnetophoretic (τm) and film-drainage time scales (τfd) and the advection time scale (τa), expressed in terms of the Strouhal number (St) and the film-drainage Reynolds number (Refd) as ζ = (τm + τfd)/τa = (St-1 + Refd). Irrespective of the flow rates of the coflowing streams, droplet size, and magnetic field, our study shows that droplet-stream coalescence is achieved for ζ ≤ 50 and ferrofluid stream width ratio w* < 0.7. We utilize the phenomenon and demonstrated the extraction of microparticles and HeLa cells from aqueous droplets to an aqueous stream.
CITATION STYLE
Banerjee, U., Mandal, C., Jain, S. K., & Sen, A. K. (2019). Cross-stream migration and coalescence of droplets in a microchannel co-flow using magnetophoresis. Physics of Fluids, 31(11). https://doi.org/10.1063/1.5123533
Mendeley helps you to discover research relevant for your work.