Predicting the binding mode of flexible polypeptides to proteins is an important task that falls outside the domain of applicability of most small molecule and protein−protein docking tools. Here, we test the small molecule flexible ligand docking program Glide on a set of 19 non-α-helical peptides and systematically improve pose prediction accuracy by enhancing Glide sampling for flexible polypeptides. In addition, scoring of the poses was improved by post-processing with physics-based implicit solvent MM- GBSA calculations. Using the best RMSD among the top 10 scoring poses as a metric, the success rate (RMSD ≤ 2.0 Å for the interface backbone atoms) increased from 21% with default Glide SP settings to 58% with the enhanced peptide sampling and scoring protocol in the case of redocking to the native protein structure. This approaches the accuracy of the recently developed Rosetta FlexPepDock method (63% success for these 19 peptides) while being over 100 times faster. Cross-docking was performed for a subset of cases where an unbound receptor structure was available, and in that case, 40% of peptides were docked successfully. We analyze the results and find that the optimized polypeptide protocol is most accurate for extended peptides of limited size and number of formal charges, defining a domain of applicability for this approach.
CITATION STYLE
Deroo, G., Herbin, J. P., & Roucache, J. (1978). Organic Geochemistry of Some Neogene Cores from Sites 374, 375, 377, and 378: Leg 42A, Eastern Mediterranean Sea. In Initial Reports of the Deep Sea Drilling Project, 42 Pt. 1. U.S. Government Printing Office. https://doi.org/10.2973/dsdp.proc.42-1.113-3.1978
Mendeley helps you to discover research relevant for your work.