The ongoing energy transformation, which is fueled by environmentally cautious policies, demands a full synergy with existing back-up gas turbines (GTs). Renewable energy sources (RESs), such as wind and solar, are intermittent by nature and present large variations across the span of the day, seasons, and geographies. The gas turbine is seen as an essential part of the energy transition because of its superior operational flexibility over other non-renewable counterparts, such as hydro and nuclear. Besides the technical aspects, the latter are less popular due to controversies associated with safety, ecological, and social aspects. GTs can produce when required and with acceptable reaction times and load ranges. This allows a balance between the energy supply and demand in the grid, mitigating the variations in RESs. The increased cycling due to operational flexibility has adverse effects on GT components and the unit efficiency. The latter dictates how well GTs make use of the burned fuel and influence the emissions per energy unit. This paper investigates these aspects. First, it presents the effects of increased penetration of renewable energy sources (RESs) into the grid. Second, it defines the new operation requirements including more dynamic load regimes, the provision for high occurrences of starts and stops, continuous and variant load cycling operations, extended partial loading or stand-by, and other conditions not foreseen under the classic baseload or cyclic operations. Finally, it proposes the overhauling of the present GT inspection and lifing criteria to meet the new role of GTs.
CITATION STYLE
Farhat, H., & Salvini, C. (2022, August 1). Novel Gas Turbine Challenges to Support the Clean Energy Transition. Energies. MDPI. https://doi.org/10.3390/en15155474
Mendeley helps you to discover research relevant for your work.