The association of K-Ras4B protein with plasma membrane (PM) is required for its signaling activity. Thus, direct inhibition of K-Ras4B-PM interaction could be a potential anti-Ras therapeutic strategy. However, it remains challenging to modulate such protein-PM interaction. Based on Ras isoform-specific PM microdomain localization patterns, we have developed a potent and isoform-selective peptide inhibitor, Memrasin, for detachment of K-Ras4B from the PM. Memrasin is one of the first direct inhibitors of K-Ras4B-PM interaction, and consists of a membrane ld region-binding sequence derived from the C-terminal region of K-Ras4B and an endosome-escape enhancing motif that can aggregate on membrane. It forms peptide-enriched domains in the ld region, abrogates the tethering of K-Ras4B to the PM and accordingly impairs Ras signaling activity, thereby efficiently decreasing the viability of several human lung cancer cells in a dose-responsive and K-Ras dependent manner. Memrasin provides a useful tool for exploring the biological function of K-Ras4B on or off the PM and a potential starting point for further development into anti-Ras therapeutics.
CITATION STYLE
Li, F. Y., Zhang, Z. F., Voss, S., Wu, Y. W., Zhao, Y. F., Li, Y. M., & Chen, Y. X. (2020). Inhibition of K-Ras4B-plasma membrane association with a membrane microdomain-targeting peptide. Chemical Science, 11(3), 826–832. https://doi.org/10.1039/c9sc04726c
Mendeley helps you to discover research relevant for your work.