The Orphan Response Regulator Rv3143 Modulates the Activity of the NADH Dehydrogenase Complex (Nuo) in Mycobacterium tuberculosis via Protein–Protein Interactions

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Two-component signal transduction systems enable mycobacterial cells to quickly adapt and adequately respond to adverse environmental conditions encountered at various stages of host infection. We attempted to determine the role of the Rv3143 “orphan” response regulator in the physiology of Mycobacterium tuberculosis and its orthologue Msmeg_2064 in Mycobacterium smegmatis. We identified the Rv3143 protein as an interaction partner for NuoD, a member of the type I NADH dehydrogenase complex involved in oxidative phosphorylation. The mutants Δrv3143 and Δmsmeg_2064 were engineered in M. tuberculosis and M. smegmatis cells, respectively. The Δmsmeg_2064 strain exhibited a significant reduction in growth and viability in the presence of reactive nitrogen species. The Rv3143-deficient strain was sensitive to valinomycin, which is known to reduce the electrochemical potential of the cell and overexpressed genes required for nitrate respiration. An increased level of reduction of the 2,3,5-triphenyltetrazolium chloride (TTC) electron acceptor in Δrv3143 and Δmsmeg_2064 cells was also evident. The silencing of ndh expression using CRISPRi/dCas9 affected cell survival under limited oxygen conditions. Oxygen consumption during entry to hypoxia was most severely affected in the double-mutant Δmsmeg_2064 ndhCRISPRi/dCas9. We propose that the regulatory protein Rv3143 is a component of the Nuo complex and modulates its activity.

Cite

CITATION STYLE

APA

Płocińska, R., Wasik, K., Płociński, P., Lechowicz, E., Antczak, M., Błaszczyk, E., … Dziadek, J. (2022). The Orphan Response Regulator Rv3143 Modulates the Activity of the NADH Dehydrogenase Complex (Nuo) in Mycobacterium tuberculosis via Protein–Protein Interactions. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.909507

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free