Reading between the lines: A prototype model for detecting twitter sockpuppet accounts using language-agnostic processes

5Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sockpuppets are online identities controlled by a user or group of users to manipulate the dissemination of information in digital environments. This manipulation can distort computational assessments of public opinion in social media. Using Russian-language Twitter data from the Ukrainian crisis in 2014, we present a proof-of-concept model employing character n-gram methods to detect sockpuppets. Previous research has demonstrated that n-gram authorship attribution methods can capture lexical preferences, including grammatical and orthographic preferences, while also being less computationally intensive than grammatical or compression language models. Additionally, they can be applied to any language data irrespective of orthography. In this study, a Naïve Bayes classifier was constructed using normalized frequencies of parsed character bigrams to contrast author bigram use. The created model illustrated that suspected sockpuppet accounts were less likely to be correctly classified, showing lower precision, recall, and f-measure rates than other accounts, as predicted.

References Powered by Scopus

The elaboration likelihood model of persuasion

5700Citations
N/AReaders
Get full text

Computational methods in authorship attribution

517Citations
N/AReaders
Get full text

The effect of author set size and data size in authorship attribution

100Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Using structural topic modeling to detect events and cluster twitter users in the Ukrainian Crisis

38Citations
N/AReaders
Get full text

Social Media Identity Deception Detection: A Survey

23Citations
N/AReaders
Get full text

#IStandWithDan versus #DictatorDan: the polarised dynamics of Twitter discussions about Victoria’s COVID-19 restrictions

23Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Crabb, E. S., Mishler, A., Paletz, S., Hefright, B., & Golonka, E. (2015). Reading between the lines: A prototype model for detecting twitter sockpuppet accounts using language-agnostic processes. In Communications in Computer and Information Science (Vol. 528, pp. 656–661). Springer Verlag. https://doi.org/10.1007/978-3-319-21380-4_111

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 4

36%

Researcher 4

36%

Lecturer / Post doc 2

18%

Professor / Associate Prof. 1

9%

Readers' Discipline

Tooltip

Computer Science 7

70%

Social Sciences 1

10%

Psychology 1

10%

Mathematics 1

10%

Save time finding and organizing research with Mendeley

Sign up for free