Background/Aim: Bevacizumab (BV) has been used for the treatment of recurrent glioblastoma. However, it also induces epithelial-mesenchymal transition (EMT) in glioblastoma cells, which compromises its efficacy. BATF2 (basic leucine zipper ATF-like transcription factor 2), a multi-target transcriptional repressor, has been found to suppress cancer development partly through inhibition of Wnt/β-catenin singling. The roles of BATF2 and Wnt/β-catenin signaling in BV-induced EMT in glioblastoma cells were investigated in this study. Materials and Methods: BV was used to treat U87MG cells, and TOP/FOP FLASH luciferase reporters were employed to determine the activity of Wnt/β-catenin signaling. EMT markers were detected with quantitative reverse transcription-PCR and western blotting. Immunofluorescence (IF) was used to determine the compartmentation of β-catenin. Wound-healing, TransWell and ECIS assays were used to analyze cell adhesion, invasion and migration. Results: BV induced EMT phenotype in U87MG cells, and BATF2 overexpression significantly inhibited BV-induced EMT with suppression of Wnt/β-catenin signaling. Conclusion: Our findings expanded the understanding of the role of BATF2 in tumors, and also suggested a potential of using BATF2 as a therapeutic target to hinder bevacizumab induced EMT in glioblastoma.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Huang, W., Zhang, C., Cui, M., Niu, J., & Ding, W. (2017). Inhibition of bevacizumab-induced epithelial-mesenchymal transition by BATF2 overexpression involves the suppression of Wnt/β-Catenin signaling in glioblastoma cells. In Anticancer Research (Vol. 37, pp. 4285–4294). International Institute of Anticancer Research. https://doi.org/10.21873/anticanres.11821