Effects of cadmium sulfide nanoparticles on sulfate bioreduction and oxidative stress in Desulfovibrio desulfuricans

6Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sulfate-containing wastewater has a serious threat to the environment and human health. Microbial technology has great potential for the treatment of sulfate-containing wastewater. It was found that nano-photocatalysts could be used as extracellular electron donors to promote the growth and metabolic activity of non-photosynthetic microorganisms. However, nano-photocatalysts could also induce oxidative stress and damage cells. Therefore, the interaction mechanism between photosynthetic nanocatalysts and non-photosynthetic microorganisms is crucial to determine the regulatory strategies for microbial wastewater treatment technologies. In this paper, the mechanism and regulation strategy of cadmium sulfide nanoparticles (CdS NPs) on the growth of sulfate-reducing bacteria and the sulfate reduction process were investigated. The results showed that the sulfate reduction efficiency could be increased by 6.4% through CdS NPs under light conditions. However, the growth of Desulfovibrio desulfuricans C09 was seriously inhibited by 55% due to the oxidative stress induced by CdS NPs on cells. The biomass and sulfate reduction efficiency could be enhanced by 6.8% and 5.9%, respectively, through external addition of humic acid (HA). At the same time, the mechanism of the CdS NPs strengthening the sulfate reduction process by sulfate bacteria was also studied which can provide important theoretical guidance and technical support for the development of microbial technology combined with extracellular electron transfer (EET) for the treatment of sulfate-containing wastewater. Graphical Abstract: [Figure not available: see fulltext.]

Cite

CITATION STYLE

APA

Cheng, G., Ding, H., Chen, G., Shi, H., Zhang, X., Zhu, M., & Tan, W. (2022). Effects of cadmium sulfide nanoparticles on sulfate bioreduction and oxidative stress in Desulfovibrio desulfuricans. Bioresources and Bioprocessing, 9(1). https://doi.org/10.1186/s40643-022-00523-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free