A pilot feasibility study comparing large language models in extracting key information from ICU patient text records from an Irish population

1Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Artificial intelligence, through improved data management and automated summarisation, has the potential to enhance intensive care unit (ICU) care. Large language models (LLMs) can interrogate and summarise large volumes of medical notes to create succinct discharge summaries. In this study, we aim to investigate the potential of LLMs to accurately and concisely synthesise ICU discharge summaries. Methods: Anonymised clinical notes from ICU admissions were used to train and validate a prompting structure in three separate LLMs (ChatGPT, GPT-4 API and Llama 2) to generate concise clinical summaries. Summaries were adjudicated by staff intensivists on ability to identify and appropriately order a pre-defined list of important clinical events as well as readability, organisation, succinctness, and overall rank. Results: In the development phase, text from five ICU episodes was used to develop a series of prompts to best capture clinical summaries. In the testing phase, a summary produced by each LLM from an additional six ICU episodes was utilised for evaluation. Overall ability to identify a pre-defined list of important clinical events in the summary was 41.5 ± 15.2% for GPT-4 API, 19.2 ± 20.9% for ChatGPT and 16.5 ± 14.1% for Llama2 (p = 0.002). GPT-4 API followed by ChatGPT had the highest score to appropriately order a pre-defined list of important clinical events in the summary as well as readability, organisation, succinctness, and overall rank, whilst Llama2 scored lowest for all. GPT-4 API produced minor hallucinations, which were not present in the other models. Conclusion: Differences exist in large language model performance in readability, organisation, succinctness, and sequencing of clinical events compared to others. All encountered issues with narrative coherence and omitted key clinical data and only moderately captured all clinically meaningful data in the correct order. However, these technologies suggest future potential for creating succinct discharge summaries.

Cite

CITATION STYLE

APA

Urquhart, E., Ryan, J., Hartigan, S., Nita, C., Hanley, C., Moran, P., … McNicholas, B. A. (2024). A pilot feasibility study comparing large language models in extracting key information from ICU patient text records from an Irish population. Intensive Care Medicine Experimental, 12(1). https://doi.org/10.1186/s40635-024-00656-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free