On the rank function of a differential poset

6Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

We study r-Differential posets, a class of combinatorial objects introduced in 1988 by the first author, which gathers together a number of remarkable combinatorial and algebraic properties, and generalizes important examples of ranked posets, in- cluding the Young lattice. We first provide a simple bijection relating Differential posets to a certain class of hypergraphs, including all finite projective planes, which are shown to be naturally embedded in the initial ranks of some Differential poset. As a byproduct, we prove the existence, if and only if r ≥ 6, of r-Differential posets nonisomorphic in any two consecutive ranks but having the same rank function. We also show that the Interval Property, conjectured by the second author and collabo- rators for several sequences of interest in combinatorics and combinatorial algebra, in general fails for Differential posets. In the second part, we prove that the rank function pn of any arbitrary r-Differential poset has nonpolynomial growth; namely, pn ≫ nae2√rn, a bound very close to the Hardy-Ramanujan asymptotic formula that holds in the special case of Young's lattice. We conclude by posing several open questions.

Cite

CITATION STYLE

APA

Stanley, R. P., & Zanello, F. (2012). On the rank function of a differential poset. Electronic Journal of Combinatorics, 19(2), 1–17. https://doi.org/10.37236/2258

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free