Land surface temperature retrieval using airborne hyperspectral scanner daytime mid-infrared data

22Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Land surface temperature (LST) retrieval is a key issue in infrared quantitative remote sensing. In this paper, a split window algorithm is proposed to estimate LST with daytime data in two mid-infrared channels (channel 66 (3.746~4.084 μm) and channel 68 (4.418~4.785 μm)) from Airborne Hyperspectral Scanner (AHS). The estimation is conducted after eliminating reflected direct solar radiance with the aid of water vapor content (WVC), the view zenith angle (VZA), and the solar zenith angle (SZA). The results demonstrate that the LST can be well estimated with a root mean square error (RMSE) less than 1.0 K. Furthermore, an error analysis for the proposed method is also performed in terms of the uncertainty of LSE and WVC, as well as the Noise Equivalent Difference Temperature (NEδT). The results show that the LST errors caused by a LSE uncertainty of 0.01, a NEδT of 0.33 K, and a WVC uncertainty of 10% are 0.4~2.8 K, 0.6 K, and 0.2 K, respectively. Finally, the proposed method is applied to the AHS data of 4 July 2008. The results show that the differences between the estimated and the ground measured LST for water, bare soil and vegetation areas are approximately 0.7 K, 0.9 K and 2.3K, respectively.

Cite

CITATION STYLE

APA

Zhao, E., Qian, Y., Gao, C., Huo, H., Jiang, X., & Kong, X. (2014). Land surface temperature retrieval using airborne hyperspectral scanner daytime mid-infrared data. Remote Sensing, 6(12), 12667–12685. https://doi.org/10.3390/rs61212667

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free