Caffeic acid phenethyl ester promotes haematopoietic stem/progenitor cell homing and engraftment

16Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Several studies have suggested that caffeic acid phenethyl ester (CAPE) can induce the expression of hypoxia inducible factor-1α (HIF-1α) protein. We determined whether CAPE has a novel function in improving the homing and engraftment of haematopoietic stem/progenitor cells (HSPCs) by regulating HIF-1α gene expression in the bone marrow (BM) niche. Methods: For survival experiments, lethally irradiated C57BL/6 mice were injected with a low number of BM mononuclear cells (MNCs) and CAPE according to the indicated schedule. Homing efficiency analysis was conducted using flow cytometry and colony-forming unit (CFU) assays. The influence of intraperitoneal injection of CAPE on short-term and long-term engraftment of HSPCs was evaluated using competitive and non-competitive mouse transplantation models. To investigate the mechanism by which CAPE enhanced HSPC homing, we performed these experiments including Q-PCR, western blot, immunohistochemistry and CFU assays after in-vivo HIF-1α activity blockade. Results: CAPE injection significantly increased the survival rate of recipient mice after lethal irradiation and transplantation of a low number of BM MNCs. Using HSPC homing assays, we found that CAPE notably increased donor HSPC homing to recipient BM. The subsequent short-term and long-term engraftment of transplanted HSPCs was also improved by the optimal schedule of CAPE administration. Mechanistically, we found that CAPE upregulated the expression of HIF-1α, vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor 1α (SDF-1α). The HIF-1α inhibitor PX-478 blocked CAPE-enhanced HSPC homing, which supported the idea that HIF-1α is a key target of CAPE. Conclusions: Our results showed that CAPE administration facilitated HSPC homing and engraftment, and this effect was primarily dependent on HIF-1α activation and upregulation of SDF-1α and VEGF-A expression in the BM niche.

Cite

CITATION STYLE

APA

Chen, X., Han, Y., Zhang, B., Liu, Y., Wang, S., Liao, T., … Pei, X. (2017). Caffeic acid phenethyl ester promotes haematopoietic stem/progenitor cell homing and engraftment. Stem Cell Research and Therapy, 8(1). https://doi.org/10.1186/s13287-017-0708-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free