Exploring social relations for personalized tag recommendation in social tagging systems

6Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

With the emergence of Web 2.0, social tagging systems become highly popular in recent years and thus form the so-called folksonomies. Personalized tag recommendation in social tagging systems is to provide a user with a ranked list of tags for a specific resource that best serves the user's needs. Many existing tag recommendation approaches assume that users are independent and identically distributed. This assumption ignores the social relations between users, which are increasingly popular nowadays. In this paper, we investigate the role of social relations in the task of tag recommendation and propose a personalized collaborative filtering algorithm. In addition to the social annotations made by collaborative users, we inject the social relations between users and the content similarities between resources into a graph representation of folksonomies. To fully explore the structure of this graph, instead of computing similarities between objects using feature vectors, we exploit the method of random-walk computation of similarities, which furthermore enable us to model a user's tag preferences with the similarities between the user and all the tags. We combine both the collaborative information and the tag preferences to recommend personalized tags to users. We conduct experiments on a dataset collected from a real-world system. The results of comparative experiments show that the proposed algorithm outperforms state-of-the-art tag recommendation algorithms in terms of prediction quality measured by precision, recall and NDCG. © 2011 The Institute of Electronics, Information and Communication Engineers.

Cite

CITATION STYLE

APA

Liu, K., Fang, B., & Zhang, W. (2011). Exploring social relations for personalized tag recommendation in social tagging systems. In IEICE Transactions on Information and Systems (Vol. E94-D, pp. 542–551). Institute of Electronics, Information and Communication, Engineers, IEICE. https://doi.org/10.1587/transinf.E94.D.542

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free