To enhance the water flux and salt rejection of reverse osmosis membranes, thin film nanocomposite reverse osmosis membranes were prepared by incorporating functionalised single-walled carbon nanotubes (SWNTs). The functionalised SWNTs were obtained by chemical process such as mixed acid oxidation and substitution reaction. The SWNTs were characterised by HRTEM, FTIR, TGA, Raman spectra, UV-Vis and XPS, etc. The surface morphology and structure of membrane were characterised by SEM and contact angle measurement, respectively. The results showed that carboxyl, acyl, amide and amine were successfully grafted on the tip and inner wall of the single-walled carbon nanotubes. The dispersity of the functionalised SWNTs in water was tested, indicating a good hydrophilic property. The polyamide/modified CNT nanocomposite reverse osmosis membrane was prepared. Compared with the bare polyamide membrane, the SWNT-polyamide thin film nanocomposite membranes showed higher property in hydrophilic surface and its water flux, as along with salt rejection, improved dramatically. The experimental results revealed that the modified SWNTs (especially those containing hydrophilic groups such as carboxyl groups and amino groups) well dispersed in the polyamide thin film layer, and hence improved the water permeation, and the salt rejection.
CITATION STYLE
Wang, J., Yang, D., Gao, X., Wang, X., Li, Q., & Liu, Q. (2017). Tip and inner walls modification of single-walled carbon nanotubes (3.5 nm diameter) and preparation of polyamide/ modified CNT nanocomposite reverse osmosis membrane. Journal of Experimental Nanoscience, 13(1), 11–26. https://doi.org/10.1080/17458080.2017.1405163
Mendeley helps you to discover research relevant for your work.