Using RNase sequence specificity to refine the identification of RNA-protein binding regions

10Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Massively parallel pyrosequencing is a high-throughput technology that can sequence hundreds of thousands of DNA/RNA fragments in a single experiment. Combining it with immunoprecipitation-based biochemical assays, such as cross-linking immunoprecipitation (CLIP), provides a genome-wide method to detect the sites at which proteins bind DNA or RNA. In a CLIP-pyrosequencing experiment, the resolutions of the detected protein binding regions are partially determined by the length of the detected RNA fragments (CLIP amplicons) after trimming by RNase digestion. The lengths of these fragments usually range from 50-70 nucleotides. Many genomic regions are marked by multiple RNA fragments. In this paper, we report an empirical approach to refine the localization of protein binding regions by using the distribution pattern of the detected RNA fragments and the sequence specificity of RNase digestion. We present two regions to which multiple amplicons map as examples to demonstrate this approach. © 2008 Wang et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Wang, X., Wang, G., Shen, C., Li, L., Wang, X., Mooney, S. D., … Liu, Y. (2008). Using RNase sequence specificity to refine the identification of RNA-protein binding regions. BMC Genomics, 9(SUPPL. 1). https://doi.org/10.1186/1471-2164-9-S1-S17

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free