Background and purpose: Therapeutic drug monitoring is a valuable tool supporting immunosuppressive therapy. Significant variation of immunosuppressive drug (ISD) concentrations during their use at similar doses is the basis of dose-normalization strategy. The strategy of dose-adjustment is proposed to identify variability in the rate of ISD metabolism. While the parent drug-to-metabolite ratio (metabolic ratio, MR) represents the rate of formation of individual metabolites. The present study was aimed at evaluation of associations between ISDs’ metabolism rate expressed as dose-adjusted concentrations (C/D) and dose/kg-adjusted concentrations (C/D/kg) and MRs of individual metabolites of tacrolimus, cyclosporine A and MPA precursors. Experimental approach: 506 patients have participated: 284 males (56.13%) and 222 females (43.87%); 318 after kidney (62.85%) and 188 after liver transplantation; median age was 51.34 (39.32-59.95) years and median time after transplantation 78.92 (33.87-138.4) months. Key results: Generally, we have not observed significant relationships between dose-adjusted and dose/kg-adjusted concentrations and MRs of cyclosporine and tacrolimus. Significant correlations were found for: AM9/CsA and dMC-CsA/CsA in kidney transplant recipients and MIII/Tac, AM1/CsA and AM4N/CsA in liver transplant recipients. In contrast, MRs of mycophenolic acid (MPA) metabolites correlated significantly with MPA C/D and C/D/kg both in kidney and liver transplant recipients. Conclusion and implications: In conclusion, easily available and easy to use in clinical practice C/D and C/D/kg ratios cannot be considered as parameters directly reflecting the rate of generation of major metabolites of cyclosporine and tacrolimus both in liver and kidney transplant recipients.
CITATION STYLE
Hryniewiecka, E., Zegarska, J., Zochowska, D., Samborowska, E., Jazwiec, R., Kosieradzki, M., … Paczek, L. (2019). Dose-adjusted and dose/kg-adjusted concentrations of mycophenolic acid precursors reflect metabolic ratios of their metabolites in contrast with tacrolimus and cyclosporine. Bioscience Reports, 39(9). https://doi.org/10.1042/BSR20182031
Mendeley helps you to discover research relevant for your work.