To reduce the carbon footprint of transport, policymakers are simultaneously stimulating cleaner vehicles and more sustainable mobility choices, such as a shift to rail for short-haul flights within Europe. The purpose of this study is to determine the climate impact of a journey within Europe by aircraft, train or passenger car, and to better understand what factors drive this impact in order to make smarter and more sustainable fact-based mobility choices. The study consists of a life cycle inventory (LCI) and life cycle impact assessment (LCA) of greenhouse gas emissions of specific vehicles in five case study travel scenarios in Europe. The energy and resulting direct emissions (including non-CO2) of the aircraft scenarios were calculated for the purpose of this study using the Mission Aircraft and Systems Simulation tool developed by the Royal Netherlands Aerospace Centre NLR. For other LCA phases and other modes of transport, the study relies on emission factors from public literature. A trip by train results in three to five times less emissions than a comparable trip by aircraft. In most scenarios, the passenger car with two people onboard emits significantly more than a train but slightly less than an aircraft. The study also shows what drives the climate impact of such a trip and how this is very different for different modes of transport. The study further highlights a lack of high-quality data, especially in the areas of indirect emissions and infrastructure, poor consistency among studies and a general under-documentation and lack of transparency regarding assumptions.
CITATION STYLE
Roosien, R. J., Lim, M. N. A., Petermeier, S. M., & Lammen, W. F. (2024). Multi-Modal Life Cycle Assessment of Journeys by Aircraft, Train or Passenger Car. Aerospace, 11(1). https://doi.org/10.3390/aerospace11010098
Mendeley helps you to discover research relevant for your work.