Characterizing the fundamental energy efficiency (EE) performance of multiple-input-multiple-output interfering broadcast channels (MIMO-IFBC) is important for the design of green wireless system. In this paper, we propose a new network architecture proposition based on EE maximization for Multi-Cell MIMO-IFBC within the context of interference alignment (IA). Particularly, EE is maximized subject to maximum power and minimum throughput constraints. We propose two schemes to optimize EE for different signal-to-noise ratio (SNR) regions. For high-SNR operating regions, we employ a grouping-based IA scheme to jointly cancel intra- and inter-cell interferences and thus transform the MIMO-IFBC to a single-cell MIMO scenario. A gradient-based power adaptation scheme is proposed based on water-filling power adaptation and singular value decomposition to maximize EE for each cell. For moderate SNR cases, we propose an approach using dirty paper coding (DPC) with the principle of multiple access channel and broadcast channel duality to perform IA while maximizing EE in each cell. The algorithm in its dual form is solved using a subgradient method and a bisection searching scheme. Simulation results demonstrate the superior performance of the proposed schemes over several existing approaches. It also shows that interference-nulling-based IA approaches outperform hybrid DPC-IA approach in high-SNR region, and the opposite occurs in low-SNR region.
CITATION STYLE
Tang, J., So, D. K. C., Alsusa, E., Hamdi, K. A., & Shojaeifard, A. (2015). Energy efficiency optimization with interference alignment in multi-cell MIMO interfering broadcast channels. In IEEE Transactions on Communications (Vol. 63, pp. 2486–2499). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TCOMM.2015.2442246
Mendeley helps you to discover research relevant for your work.