Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity

168Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

Polysialic acid (PSA) on the extracellular domain of the neural cell adhesion molecule (NCAM) reduces cell adhesion and is considered an important regulator of cell surface interactions. The hypothalamo-neurohypophysial system (HNS), whose glia, neurons, and synapses undergo striking, reversible morphological changes in response to physiological stimulation, expresses high levels of PSA-NCAM throughout life. Light and electron microscopic immunocytochemistry in normal rats and rats in which cell transport was blocked with colchicine showed that PSA-NCAM is expressed in both HNS neurons and glia, particularly at the level of astrocytic processes that envelop neuronal profiles and can undergo remodeling. Moreover, we confirmed that the overall levels of PSA-NCAM were not greatly altered by stimulation (lactation and chronic salt ingestion). Nevertheless, PSA is essential to morphological plasticity. Using comparative ultrastructural analysis, we found that, after specific enzymatic removal of PSA from NCAM by microinjection of endoneuraminidase close to the hypothalamic magnocellular nuclei in vivo, there was no apparent withdrawal of astrocytic processes nor any increase in synaptic contacts normally induced by lactation and dehydration. Our observations demonstrate, therefore, that expression of PSA on cell surfaces in the adult HNS is indispensable to its capacity for activity-dependent morphological neuronal-glial and synaptic plasticity. The carbohydrate PSA on NCAM can thus be considered a necessary permissive factor to allow neuronal and glial remodeling to occur whenever the proper inductive stimulus intervenes.

Cite

CITATION STYLE

APA

Theodosis, D. T., Bonhomme, R., Vitiello, S., Rougon, G., & Poulain, D. A. (1999). Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity. Journal of Neuroscience, 19(23), 10228–10236. https://doi.org/10.1523/jneurosci.19-23-10228.1999

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free