The hepatocyte growth factor (HGF)/c-Met signaling pathway results in cancer cell scattering and invasion, and has been reported to participate in several types of cancer, including prostate and colorectal cancer. The downstream phosphorylation cascade of HGF, particularly the mitogen-activated protein kinase and phosphoinositide 3-kinase/AKT signaling pathway, regulates epithelial-mesenchymal transition (EMT). However, the mechanism by which these signaling pathways govern EMT, and whether certain kinases are able to respond to specific EMT effectors, remains to be elucidated. In the present study, an increase in the levels of vimentin, rather than co-regulation of certain EMT marker proteins, was observed in response to HGF-induced EMT in DU145 prostate cancer cells. In addition, it was observed that curcumin abrogated HGF-induced DU145 cell scattering and invasion. Furthermore, curcumin was able to effectively inhibit the HGF-induced increase in the levels of vimentin by downregulating the expression of phosphorylated c-Met, extracellular signal-regulated kinase and Snail. In conclusion, the results of the present study demonstrated that curcumin was able to reverse HGF-induced EMT, possibly by inhibiting c-Met expression in DU145 prostate cancer cells.
CITATION STYLE
Hu, H. J., Lin, X. L., Liu, M. H., Fan, X. J., & Zou, W. W. (2016). Curcumin mediates reversion of HGF-induced epithelial-mesenchymal transition via inhibition of c-Met expression in DU145 cells. Oncology Letters, 11(2), 1499–1505. https://doi.org/10.3892/ol.2015.4063
Mendeley helps you to discover research relevant for your work.