Purpose: To quantitatively validate diffusion-weighted MRI (DW-MRI) applications, a hardware phantom containing crossing fibers at a sub-voxel level is presented. It is suitable for validation of a large spectrum of DW-MRI applications from acquisition to fiber tracking, which is an important recurrent issue in the field. Materials and Methods: Phantom properties were optimized to resemble properties of human white matter in terms of anisotropy, fractional anisotropy, and T 2. Subvoxel crossings were constructed at angles of 30, 50, and 65 degrees, by wrapping polyester fibers, with a diameter close to axon diameter, into heat shrink tubes. We show our phantoms are suitable for the acquisition of DW-MRI data using a clinical protocol. Results: The phantoms can be used to succesfully estimate both the diffusion tensor and non-Gaussian diffusion models, and perform streamline fiber tracking. DOT (Diffusion Orientation Transform) and q-ball reconstruction of the diffusion profiles acquired at b = 3000 s/mm 2 and 132 diffusion directions reveal multimodal diffusion profiles in voxels containing crossing yarn strands. Conclusion: The highly purpose adaptable phantoms provide a DW-MRI validation platform: applications include optimisation of acquisition schemes, validation of non-Gaussian diffusion models, comparison and validation of fiber tracking algorithms, and quality control in multi-center DWI studies. © 2010 Wiley-Liss, Inc.
CITATION STYLE
Pullens, P., Roebroeck, A., & Goebel, R. (2010). Ground truth hardware phantoms for validation of diffusion-weighted MRI applications. Journal of Magnetic Resonance Imaging, 32(2), 482–488. https://doi.org/10.1002/jmri.22243
Mendeley helps you to discover research relevant for your work.