Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g 2 (t), from which the frequency-dependent viscoelastic modulus, G∗(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G∗(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10-9), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa-36 kPa). In addition, |G∗(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10-7). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales.
CITATION STYLE
Hajjarian, Z., Nia, H. T., Ahn, S., Grodzinsky, A. J., Jain, R. K., & Nadkarni, S. K. (2016). Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds. Scientific Reports, 6. https://doi.org/10.1038/srep37949
Mendeley helps you to discover research relevant for your work.