Basic fibroblast growth factor binds its receptors, is internalized, and stimulates DNA synthesis in Balb/c3T3 cells in the absence of heparan sulfate

98Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We have investigated the interaction of basic fibroblast growth factor (bFGF) with its receptors and heparan sulfate proteoglycans (HSPG). It has been suggested that in the absence of HSPG, cells are not able to bind bFGF or respond to treatment with hFGF. In our studies, Balb/c3T3 fibroblasts were treated with 50 mM sodium chlorate to completely inhibit (99%) sulfation of proteoglycans. We found that bFGF was able to bind, be internalized, and stimulate DNA synthesis in the absence of HSPG in a dose-dependent manner. bFGF bound to its receptors on chlorate-treated cells with a lower apparent affinity and no change in receptor number. To determine if this decreased affinity bFGF-receptor interaction is functional, we quantitatively analyzed bFGF internalization and stimulation of DNA synthesis in control and chlorate-treated cells. Endocytotic rate constants (k(e)) for chlorate- treated and control cells were k(e) = 0.078 ± 0.022 min-1 and k(e) = 0.043 ± 0.012 min-1, respectively, suggesting that the process of bFGF internalization is not dramatically altered by HSPG. bFGF stimulated DNA synthesis to the same maximal level under both conditions, but chlorate- treated cells were significantly less responsive at low bFGF doses (~10- fold increase in ED50). The differences observed for control and chlorate- treated cells in the dose-response curves for stimulation of DNA synthesis and receptor binding correlated directly, suggesting that receptors are equally capable of eliciting a mitogenic signal under both conditions. It is unlikely that these results are due to residual HSPG since heparinase (I and III) digestion of chlorate-treated cells had little effect. Although the presence of HSPG on the cell surface increases the affinity of bFGF for its receptors, our observations suggest that HSPG are not 'absolutely' required for binding, internalization, or stimulation of mitogenic activity.

Cite

CITATION STYLE

APA

Fannon, M., & Nugent, M. A. (1996). Basic fibroblast growth factor binds its receptors, is internalized, and stimulates DNA synthesis in Balb/c3T3 cells in the absence of heparan sulfate. Journal of Biological Chemistry, 271(30), 17949–17956. https://doi.org/10.1074/jbc.271.30.17949

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free