Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes

68Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

NASICON- (Na superionic conductor-) based solid-state electrolytes (SSEs) are believed to be attracting candidates for solid-state sodium batteries due to their high ionic conductivity and prospectively reliable stability. However, the poor interface compatibility and the formation of Na dendrites inhibit their practical application. Herein, we directly observed the propagation of Na dendrites through NASICON-based Na3.1Zr2Si2.1P0.9O12 SSE for the first time. Moreover, a fluorinated amorphous carbon (FAC) interfacial layer on the ceramic surface was simply developed by in situ carbonization of PVDF to improve the compatibility between Na metal and SSEs. Surprisingly, Na dendrites were effectively suppressed due to the formation of NaF in the interface when molten Na metal contacts with the FAC layer. Benefiting from the optimized interface, both the Na||Na symmetric cells and Na3V2(PO4)3||Na solid-state sodium batteries deliver remarkably electrochemical stability. These results offer benign reference to the maturation of NASICON-based solid-state sodium batteries.

Cite

CITATION STYLE

APA

Zhang, Q., Lu, Y., Guo, W., Shao, Y., Liu, L., Lu, J., … Hu, Y. S. (2021). Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Material Advances, 2021. https://doi.org/10.34133/2021/9870879

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free