A new methodology is proposed to estimate and account for systematic model error in linear filtering as well as in nonlinear ensemble based filtering. Our results extend the work of Dee and Todling (2000) on constant bias errors to time-varying model errors. In contrast to existing methodologies, the new filter can also deal with the case where no dynamical model for the systematic error is available. In the latter case, the applicability is limited by a matrix rank condition which has to be satisfied in order for the filter to exist. The performance of the filter developed in this paper is limited by the availability and the accuracy of observations and by the variance of the stochastic model error component. The effect of these aspects on the estimation accuracy is investigated in several numerical experiments using the Lorenz (1996) model. Experimental results indicate that the availability of a dynamical model for the systematic error significantly reduces the variance of the model error estimates, but has only minor effect on the estimates of the system state. The filter is able to estimate additive model error of any type, provided that the rank condition is satisfied and that the stochastic errors and measurement errors are significantly smaller than the systematic errors. The results of this study are encouraging. However, it remains to be seen how the filter performs in more realistic applications.
CITATION STYLE
Gillijns, S., & De Moor, B. (2007). Model error estimation in ensemble data assimilation. Nonlinear Processes in Geophysics, 14(1), 59–71. https://doi.org/10.5194/npg-14-59-2007
Mendeley helps you to discover research relevant for your work.