Synthesis of glycerol-derived 4-alkyl-substituted 1,2,3-triazoles and evaluation of their fungicidal, phytotoxic, and antiproliferative activities

13Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Herein, the synthesis of nine novel glycerol-derived 4-alkyl-substituted 1,2,3-triazoles, using the CuI-catalyzed alkyne-azide cycloaddition reaction as the key step, is reported. The triazoles were characterized by infrared and nuclear magnetic resonance (NMR 1H and 13C) spectroscopy and mass spectrometry. The nine prepared compounds were evaluated with regard to their phytotoxic, antiproliferative, and fungicidal activities. The fungicidal activity was assessed on Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. All compounds presented high efficiency (comparable to the commercial fungicide tebuconazole) in inhibiting C. gloeosporioides sporulation. The phytotoxicity of the triazoles was assessed against Lactuca sativa. Germination was the less-affected parameter, whereas the most pronounced effects of the triazoles were on the germination speed index and root growth of the L. sativa seedlings. As indicators of antiproliferative activity, the mitotic index was evaluated along with chromosomal and nuclear alterations, all of which were influenced to different degrees by the triazoles. In addition, all derivatives demonstrated aneugenic and clastogenic actions in meristematic cells of L. sativa roots. Therefore, these 4-alkyl-substituted triazoles may represent a scaffold to be explored for the development of new fungicidal agents.

Cite

CITATION STYLE

APA

Costa, A. V., Moreira, L. C., Pinto, R. T., Alves, T. A., Schwan, V. V., de Queiroz, V. T., … de Jesus, W. C. (2020). Synthesis of glycerol-derived 4-alkyl-substituted 1,2,3-triazoles and evaluation of their fungicidal, phytotoxic, and antiproliferative activities. Journal of the Brazilian Chemical Society, 31(4), 821–832. https://doi.org/10.21577/0103-5053.20190246

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free