We previously found that remote ischemic perconditioning (RIPerc) was effective in attenuating myocardial injury during cardiac surgery. Given that microRNAs (miRs) act as an important player in ischemic/reperfusion (I/R) injury and apoptosis, this study aimed to investigate whether RIPerc reduces apoptosis in atrial myocardium and which apoptosis-related miRs are involved during valve replacement surgery. Here, we demonstrated that RIPerc inhibited apoptosis in atrial myocardium during cardiac ischemia and that 17 miRs showed at least a 1.5-fold change in expression after ischemia. Of the 17 miRs, 9 miRs, including miR-1, miR-21, miR-24, and miR-195, which are related to apoptosis, exhibited different expression patterns in the RIPerc group compared with the control. Using qRT-PCR and Western blotting, we demonstrated that miR-1 and miR-195 were downregulated and that their common putative target gene Bcl-2 was upregulated in the RIPerc group. However, the differences in miR-21 and miR-24 expression, together with programmed cell death 4 (PDCD4), which is the target gene of miR-21, were not significant. These findings provide some insight into the role of miRs in the cardioprotective effects induced by RIPerc.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Hu, Q., Luo, W., Huang, L., Huang, R., & Chen, R. (2016). Apoptosis-related microRNA changes in the right atrium induced by remote ischemic perconditioning during valve replacement surgery. Scientific Reports, 6. https://doi.org/10.1038/srep18959