Biovolatilization and bioaccumulation capabilities of different elements by microscopic filamentous fungus Scopulariopsis brevicaulis were observed. Accumulation of As(III), As(V), Se(IV), Se(VI), Sb(III), Sb(V), Te(IV), Te(VI), Hg(II), Tl(I) and Bi(III) by S. brevicaulis was quantified by analysing the amount of elements in biomass of the fungus using ICP AAS. The highest amounts of bioaccumulated metal(loid)s were obtained as follows: Bi(III) > Te(IV) > Hg(II) > Se(IV) > Te(VI) > Sb(III) at different initial contents, with Bi(III) accumulation approximately 87%. The highest percentages of volatilization were found using Hg(II) (50%) and Se(IV) (46·5%); it was also demonstrated with all studied elements. This proved the biovolatilization ability of microscopic fungi under aerobic conditions. The highest removed amount was observed using Hg(II) (95·30%), and more than 80% of Se(IV), Te(IV), Bi(III) and Hg(II) was removed by bioaccumulation and biovolatilization, which implies the possibilities of use of these processes for bioremediations. There were reported significant differences between bioaccumulation and biovolatilization of almost all applied metal(loid)s if valence is mentioned. © 2014 The Society for Applied Microbiology.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Boriová, K., Čerňanský, S., Matúš, P., Bujdoš, M., & Šimonovičová, A. (2014). Bioaccumulation and biovolatilization of various elements using filamentous fungus Scopulariopsis brevicaulis. Letters in Applied Microbiology, 59(2), 217–223. https://doi.org/10.1111/lam.12266