By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’ learning plans and teachers’ curricula. However, the large amount of data processing consumes a lot of manpower and time resources, which increases the burden on educators. Therefore, this study aims to use a machine learning model to build a model to evaluate students’ learning levels for art education. To improve the prediction accuracy of the model, SVM was adopted as the basic model in this study, and was combined with SSA, ISSA, and KPCA-ISSA algorithms in turn to form a composite model. Through the experimental analysis of prediction accuracy, we found that the prediction accuracy of the KPCA-ISSA-SVMM model reached the highest, at 96.7213%, while that of the SVM model was only 91.8033%. Moreover, by putting the prediction results of the four models into the confusion matrix, it can be found that with an increase in the complexity of the composite model, the probability of classification errors in model prediction gradually decreases. It can be seen from the importance experiment that the students’ achievements in target subjects (PEG) have the greatest influence on the model prediction effect, and the importance score is 9.5958. Therefore, we should pay more attention to this characteristic value when evaluating students’ learning levels.
CITATION STYLE
Wang, S., Wang, H., Lu, Y., & Huang, J. (2024). Toward a Comprehensive Evaluation of Student Knowledge Assessment for Art Education: A Hybrid Approach by Data Mining and Machine Learning. Applied Sciences (Switzerland), 14(12). https://doi.org/10.3390/app14125020
Mendeley helps you to discover research relevant for your work.