Revolutionizing GPCR-ligand predictions: DeepGPCR with experimental validation for high-precision drug discovery

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

G-protein coupled receptors (GPCRs), crucial in various diseases, are targeted of over 40% of approved drugs. However, the reliable acquisition of experimental GPCRs structures is hindered by their lipid-embedded conformations. Traditional protein-ligand interaction models falter in GPCR-drug interactions, caused by limited and low-quality structures. Generalized models, trained on soluble protein-ligand pairs, are also inadequate. To address these issues, we developed two models, DeepGPCR_BC for binary classification and DeepGPCR_RG for affinity prediction. These models use non-structural GPCR-ligand interaction data, leveraging graph convolutional networks and mol2vec techniques to represent binding pockets and ligands as graphs. This approach significantly speeds up predictions while preserving critical physical-chemical and spatial information. In independent tests, DeepGPCR_BC surpassed Autodock Vina and Schrödinger Dock with an area under the curve of 0.72, accuracy of 0.68 and true positive rate of 0.73, whereas DeepGPCR_RG demonstrated a Pearson correlation of 0.39 and root mean squared error of 1.34. We applied these models to screen drug candidates for GPR35 (Q9HC97), yielding promising results with three (F545-1970, K297-0698, S948-0241) out of eight candidates. Furthermore, we also successfully obtained six active inhibitors for GLP-1R. Our GPCR-specific models pave the way for efficient and accurate large-scale virtual screening, potentially revolutionizing drug discovery in the GPCR field.

Cite

CITATION STYLE

APA

Zhang, H., Fan, H., Wang, J., Hou, T., Saravanan, K. M., Xia, W., … Chen, Y. (2024). Revolutionizing GPCR-ligand predictions: DeepGPCR with experimental validation for high-precision drug discovery. Briefings in Bioinformatics, 25(4). https://doi.org/10.1093/bib/bbae281

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free