Rationale: Intraplaque hemorrhage (IPH) drives atherosclerosis through the dual metabolic stresses of cholesterol-enriched erythrocyte membranes and pro-oxidant heme/iron. When clearing tissue hemorrhage, macrophages are typically seen storing either iron or lipid. We have recently defined hemorrhage-associated macrophages (HA-mac) as a plaque macrophage population that responds adaptively to IPH. Objective: This study aimed to define the key transcription factor(s) involved in HO-1 induction by heme. Methods and Results: To address this question, we used microarray analysis and transfection with siRNA and plasmids. To maintain physiological relevance, we focused on human blood-derived monocytes. We found that heme stimulates monocytes through induction of activating transcription factor 1 (ATF-1). ATF-1 coinduces heme oxygenase-1 (HO-1) and Liver X receptor beta (LXR-β). Heme-induced HO-1 and LXR-β were suppressed by knockdown of ATF-1, and HO-1 and LXR-β were induced by ATF-1 transfection. ATF-1 required phosphorylation for full functional activity. Expression of LXR-β in turn led to induction of other genes central to cholesterol efflux, such as LXR-α and ABCA1. This heme-directed state was distinct from known macrophage states (M1, M2, Mox) and, following the same format, we have designated them Mhem. Conclusions: These results show that ATF-1 mediates HO-1 induction by heme and drives macrophage adaptation to intraplaque hemorrhage. Our definition of an ATF-1-mediated pathway for linked protection from foam cell formation and oxidant stress may have therapeutic potential. © 2011 American Heart Association, Inc.
CITATION STYLE
Boyle, J. J., Johns, M., Kampfer, T., Nguyen, A. T., Game, L., Schaer, D. J., … Haskard, D. O. (2012). Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circulation Research, 110(1), 20–33. https://doi.org/10.1161/CIRCRESAHA.111.247577
Mendeley helps you to discover research relevant for your work.