A low profile pentagonal shaped monopole antenna is designed and presented for wearable applications. The main objective of this paper is to design a miniaturized ultrawide band monopole planar antenna which can work efficiently in free space but also on the surface of the human body. The impact of human tissues on antenna performance is explained using the proposed pentagonal monopole antenna. The antenna is designed with a pentagonal radiator and a matched feed line of 50 ohm and square slots are integrated on defected ground of FR4 substrate with a size of 15 mm × 25 mm to achieve ultrawide band (UWB) performance in free space and human proximity. This overall design will enhance the antenna performance with wide bandwidth ranging from 2.9 GHz to 11 GHz. Specific absorption rate (SAR) of the proposed antenna on dispersive phantom model is also measured to observe the exposure of electromagnetic energy on human tissues. The simulated and measured results of the proposed antenna exhibit wide bandwidth and radiation characteristics in both free space and human proximity.
CITATION STYLE
Doddipalli, S., Kothari, A., & Peshwe, P. (2017). A low profile ultrawide band monopole antenna for wearable applications. International Journal of Antennas and Propagation, 2017. https://doi.org/10.1155/2017/7362431
Mendeley helps you to discover research relevant for your work.